Options
Regression Analysis of the Dielectric and Morphological Properties for Porous Nanohydroxyapatite/Starch Composites: A Correlative Study
Journal
International Journal of Molecular Sciences
ISSN
1422-0067
Date Issued
2022-05-19
Author(s)
Chong You Beh
Ee Meng Cheng
Nashrul Fazli Mohd Nasir
Mohd Shukry Abdul Majid
Shing Fhan Khor
Mohd Ridzuan Mohd Jamir
Emma Ziezie Mohd Tarmizi
DOI
10.3390/ijms23105695
Abstract
<jats:p>This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε′), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz–12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε′, ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.</jats:p>
File(s)
Loading...
Name
Picture1.png
Type
personal picture
Size
3.11 KB
Format
PNG
Checksum
(MD5):21881560e0c3c9c06b18c6e8fdc11acf
