Repository logo
  • Log In
    Have you forgotten your password?
Home
  • Browse Our Collections
  • Researchers
  • Scholarly Output
  • Consultancy / Projects
  • Statistics
  • Log In
    Have you forgotten your password?
  1. Home
  2. Faculties / Institutes
  3. Lee Kong Chian Faculty of Engineering and Science
  4. Published Scholarly Output
  5. A Review of Reinforcement Learning for Semantic Communications
 
  • Details
Options

A Review of Reinforcement Learning for Semantic Communications

Journal
Journal of Network and Systems Management
ISSN
1573-7705
Date Issued
2025-05-02
Author(s)
Xiao Yan
Fan Xiumei
Kok-Lim Alvin Yau
Lee Kong Chian Faculty of Engineering and Science
Xie Zhixin
Men Rui
Yuan Gang
DOI
10.1007/s10922-025-09927-y
Abstract
This article reviews the current progress in semantic communications (SC), with a focus on the application of reinforcement learning (RL) within this field. SC enhances traditional communication by transmitting semantic information rather than complete data, thereby reducing bandwidth requirements while preserving the accuracy of the conveyed meaning. RL, a branch of machine learning, enables intelligent agents to learn from their actions and rewards in complex, dynamic environments. This paper not only reviews the theoretical foundations of SC and RL but also provides a comparative analysis of various RL approaches applied to SC, offering quantitative assessments of their performance in areas such as semantic similarity and transmission efficiency. We categorize and analyze existing research based on three primary dimensions of the SC system: the transmitter, which focuses on semantic extraction, encoding, and resource allocation; the channel, which ensures secure and efficient transmission of semantic information; and the receiver, which is responsible for semantic decoding, restoration, and multi-agent collaboration. Furthermore, we offer a balanced discussion on the advantages and potential improvements of various RL methods, providing insights into their suitability for different SC scenarios. Additionally, we discuss specific training strategies for RL agents in SC, covering exploration-exploitation trade-offs, data requirements, and adaptive learning approaches. Finally, we identify open issues in SC across various applications and scenarios, proposing potential directions for future research. By addressing these gaps, we aim to enhance understanding and simulate greater interest in further research in this emerging area.
Subjects

Review

Semantic communicatio...

Reinforcement learnin...

Transmitter

Channel

Receiver

RESOURCE-ALLOCATION

6G

File(s)
Loading...
Thumbnail Image
Name

j.png

Size

17.27 KB

Format

PNG

Checksum

(MD5):85f5e85fa8f8c13d7350540217a227b6

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback