Options
Hierarchical Image Transformation and Multi-Level Features for Anomaly Defect Detection
Journal
Sensors
ISSN
1424-8220
Date Issued
2023-01-15
Author(s)
Isack Farady
Chia-Chen Kuo
Chih-Yang Lin
DOI
10.3390/s23020988
Abstract
Anomalies are a set of samples that do not follow the normal behavior of the majority of data. In an industrial dataset, anomalies appear in a very small number of samples. Currently, deep learning-based models have achieved important advances in image anomaly detection. However, with general models, real-world application data consisting of non-ideal images, also known as poison images, become a challenge. When the work environment is not conducive to consistently acquiring a good or ideal sample, an additional adaptive learning model is needed. In this work, we design a potential methodology to tackle poison or non-ideal images that commonly appear in industrial production lines by enhancing the existing training data. We propose Hierarchical Image Transformation and Multi-level Features (HIT-MiLF) modules for an anomaly detection network to adapt to perturbances from novelties in testing images. This approach provides a hierarchical process for image transformation during pre-processing and explores the most efficient layer of extracted features from a CNN backbone. The model generates new transformations of training samples that simulate the non-ideal condition and learn the normality in high-dimensional features before applying a Gaussian mixture model to detect the anomalies from new data that it has never seen before. Our experimental results show that hierarchical transformation and multi-level feature exploration improve the baseline performance on industrial metal datasets.
File(s)
Loading...
Name
Journal Article.png
Size
17.27 KB
Format
PNG
Checksum
(MD5):85f5e85fa8f8c13d7350540217a227b6
