Options
Wireless mmWave Communication in 5G Network Slicing With Routing Model Based on IoT and Deep Learning Model
Journal
Transactions on Emerging Telecommunications Technologies
ISSN
2161-3915
Date Issued
2025-02
Author(s)
R. Suganya
L. R. Sujithra
P. Chinnasamy
DOI
10.1002/ett.70071
Abstract
In fifth-generation (5G) radio access networks (RANs), network slicing makes it possible to serve large amounts of network traffic while meeting a variety of demanding quality of service (QoS) standards. Higher path loss and sparser multipath components (MPCs) are the primary distinctions, which lead to more notable time-varying characteristics in mmWave channels. Using statistical models, such as slope-intercept methods for path loss for delay spread and angular spread, is challenging to characterize the time-varying properties of mmWave channels. Therefore, adopting mmWave communication systems requires highly accurate channel modeling and prediction. This research proposes a novel technique in wireless mmWave communication 5G network slicing and routing protocol using IoT (Internet of things) and deep learning techniques. An adaptive software-defined reinforcement recurrent autoencoder model (ASDRRAE) slices the mmWave communication network. A dilated clustering-based adversarial backpropagation model (DCAB) then performs network routing. The experimental analysis evaluates throughput, packet delivery ratio, latency, training accuracy, and precision. The suggested hybrid model has a 97.21% overall recognition rate, illustrating that the suggested strategy is aptly applicable. A 10-fold stratified cross-validation is employed to evaluate the suitability of the proposed method. © 2025 John Wiley & Sons Ltd.
Subjects
File(s)
Loading...
Name
j.png
Size
17.27 KB
Format
PNG
Checksum
(MD5):85f5e85fa8f8c13d7350540217a227b6
