Options
EGCG as a therapeutic agent: a systematic review of recent advances and challenges in nanocarrier strategies
Journal
Journal of Zhejiang University-SCIENCE B
ISSN
1862-1783
Date Issued
2025-06-30
Author(s)
Chee Ning Wong
Kai Bin Liew
Yik-Ling Chew
Ang-Lim Chua
DOI
10.1631/jzus.B2400040
Abstract
Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol abundant in green tea, has garnered significant attention for its diverse therapeutic applications, ranging from antioxidant and anti-inflammatory effects to potential anticancer properties. Despite its immense promise, the practical utilization of EGCG in therapeutic settings as a medication has been hampered by inherent limitations of this drug, including poor bioavailability, instability, and rapid degradation. This review comprehensively explores the current challenges associated with the application of EGCG and evaluates the potential of nanoparticle-based formulations in addressing these limitations. Nanoparticles, with their unique physicochemical properties, offer a platform for the enhanced stability, bioavailability, and targeted delivery of EGCG. Various nanoparticle strategies, including polymeric nanoparticle, micelle, lipid-based nanocarrier, metal nanoparticle, and silica nanoparticle, are currently employed to enhance EGCG stability and pharmacological activity. This review concludes that the particle sizes of most of these formulated nanocarriers fall within 300 nm and their encapsulation efficiency ranges from 51% to 97%. Notably, the pharmacological activities of EGCG-loaded nanoparticles, such as antioxidative, anti-inflammatory, anticancer, and antimicrobial effects, are significantly enhanced compared to those of free EGCG. By critically analyzing the existing literature and highlighting recent advancements, this article provides valuable insights into the promising prospects of nanoparticle-mediated EGCG formulations, paving the way for the development of more effective and clinically viable therapeutic strategies.
File(s)
Loading...
Name
j.png
Size
17.27 KB
Format
PNG
Checksum
(MD5):85f5e85fa8f8c13d7350540217a227b6
